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Use of the FFT to Speed Analysis of Planar
Symmetrical 3- and 5-Ports by the Integral
Equation Method

\ GORDON P. RIBLET, MEMBER, IEEE

Abstract —In a recent paper, it was shown that, for planar two-dimen-
sional problems with symmetry, linear eigenvalue-impedance matrix entry
relations may be used to simplify the integral equation method of analysis
[1]. In this paper, it is pointed out that, in the case of planar circuits with
N-fold rotational symmetry, these linear relations take the form of the
discrete Fourier transform (DFT). Consequently, the fast Fourier trans-
form (FFT) may be used in its place to give a further substantial improve-
ment in computational speed.

I. INTRODUCTION

ITH THE INTEGRAL equation method, it is nec-

essary to calculate an N X N wave impedance ma-
trix [ Z] [1]-[3). The quantity N corresponds to the number
of integral subdivisions of the periphery of the planar
circuit as in Fig. 1(a) or 1(b). The matrix Z itself is given
by the product of two N X N matrices

[Z]=[U] " [T] (1)

where the entries of the N X N matrices [U] and [T] are
determined by closed-form expressions in terms of known
quantities. The majority of the computational effort with
this method involves first calculating the inverse of the
N X N matrix U and then calculating the product of the
two N X N matrices [U]~! and [T]. For example, to calcu-
late the product of two N X N matrices, it is required in
general to perform N2 multiplications and (N —1)* ad-
ditions. However, with symmetrical networks, the number
of independent matrix entries is reduced. This opens up the
possibility .of reducing the number of basic computations
which must be performed. In fact, for the symmetrical
networks of Fig. 1(a) or (b) with N-fold rotational symme-
try, the matrices [Z], [U], [T], and [U]™" have the follow-
ing simple form:

u U oG Uy
Uw U 4 Uy
[UlI=|Uvy Uy U Un-2 |. (2)
A v, u - U |

There are only N independent matrix entries U,. The
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N-fold rotational symmetry refers only to the circular disk
which is divided into N equal segments and not the con-
necting striplines which are denoted by dashed lines.

II. Use oF THE DFT WITH THE INTEGRAL
EQUATION METHOD

In a recent publication, it was shown how the linear
eigenvalue-impedance matrix entry relations for N-fold
rotationally symmetric circuits can be used to speed up the
matrix inversion required by (1) [1]. In particular, the
eigenvalues A, of the matrix U defined by (2) are given by

1]
(3)

Similarly, the entries U, are given in terms of the eigenval-
ues by

. N
= Z Uej(m—l)(n—l)Zw/N
. .

1 N
Um=_]V Z }\ne—/(m—-l)(n—l)Zvr/N.

n=1

(4)

Now the matrix [U] ! is given in terms of the N-matrix
entries U, ! by the same sort of expression as (2). Conse-
quently, the matrix [U] can be inverted in the following
direct way: 1) express the eigenvalue A,,, m=1,---, Nasa
linear function of the matrix entries U, as in (3); 2)
determine the scalar inverses A =1/A,; and 3) express

m?’
the N-matrix entries U, ! as a linear function of A},

m=1,---, N using the expression equivalent to (4), namel
: q y
! N
U,;1= _JIV Z A;le—,(m—l)(n—l)zw/zv. (5)
n=1
- If we define m*=m—1 and n*=n—1, then (3) and (5)
become
i ej(2wm*n*/N) (6)
=0
1 M! 1
Ui=5 L (An) lev@mmnm/m, (7)
n*=0

But these expressions have the form of two discrete Fourier
transforms (DFT)! In particular, the inversion of a sym-
metrical matrix with the form of [U] in (2) requires two
discrete Fourier transform operations and N divisions. The
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Planar (a) 3- and (b) 5-port circuits with N-fold rotational

symmetry, where N is the number of segments around the periphery.

evaluation of (1) including the matrix multiplication takes
3 N? multiplications, 3 (N —1)? additions, and N divi-
sions.

III. Uske oF THE FFT WITH THE INTEGRAL

EQuUATION METHOD

Because two DFT’s are required to invert the matrix U,
it is possible to use a fast Fourier transform technique

(FFT) instead to further substantially reduce the number

of computations required. There are some restrictions on
the FFT technique which may be employed. These will be
discussed shortly. The FFT may also be used to reduce the
number of operations needed to perform the matrix multi-
plication in (1). The method used is to first determine the
eigenvalues of both the matrix [U] and the matrix [T']
using two separate FFT’s. The eigenvalues of the matrix Z
in (1) can then be determined by dividing the N eigenval-
ues of [T'] by the N eigenvalues of [U]. The matrix entries
of [Z] are then recovered using a further FFT. This last
operation is based on a DFT similar to that given in (7).
Consequently, three FFT’s are needed to perform the
computations given in (1) for the case of N-fold rotational

symmetry. All matrix operations can be eliminated.
Perhaps the most common FFT technique in use is the
Cooley—Tukey procedure [4]. It assumes that N is a power
of 2 so that N =27, where P is an integer. This procedure
won’t work here. From Fig. 1(a) and (b), it is apparent that
N must contain 3 as a factor in the case of the symmetrical
3-port circulator of Fig. 1(a) and N must contain 5 as a
factor in the case of the symmetrical 5-port of Fig. 1(b).
Consequently, a different procedure must be used. In gen-
eral, these procedures are based upon decomposing N into
composite factors and carrying out Fourier transforms over
the smaller number of terms in each of the composite
factors. If N is the product of p factors, then

p
N=]_[rl=r1r2--'rp. (8)
i=1

For the case of the symmetrical 3-port in Fig. 1(a), one of
the factors r, must be 3. In the case of the symmetrical
S-port in Fig. 1(b), one of the factors must be 5. The
simplest assumption is to take them all to be 3 for the

Fig. 2. Plots of the speed improvement factor S versus the number of
points around the periphery N for both the 3-port and 5-port cases.

3-port (N =3%) and all to be 5 for the 5-port (N =157).
The speed ratio improvement S of these FFT procedures
to the DFT is given by

N? N
S= -
rr

=1

P
NYr,
=1

In the case of the N-fold symmetrical 3-port with all
factors r,= 3, one has that S= N/3p. In the case of the
N-fold symmetrical 5-port with all factors .= 5, S = N/5p.
For example, in the case of the 3-port with 729 points
around the periphery corresponding to p =6, §=729/3 X
6 = 40. For the case of the 5-port with 625 points around
the periphery corresponding to p =4, §=625/5x4 =31,
With roughly 1000 points around the periphery, it is possi-
ble to specify the coupling angle 2y of the striplines with
the disk to about 1-percent accuracy. A plot of the speed
improvement factor S versus the number of points around
the periphery N is given in Fig. 2 for both the 3-port and
5-port cases.

(©)

IV. APPLICATION TO MICROSTRIP

Up until this time, the integral equation method has
been applied to planar stripline circuits (Fig. 3(a)) with a
dielectric constant ¢ and radius R on both sides of the
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Fig. 3. (a) Stripline and (b) microstrip configurations for application of
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the FFT method.

center conductor. However, it can be applied as well to
planar microstrip circuits (Fig. 3(b)). In this case, there is
an air dielectric (e =1) above the center conductor. In
addition, the air gap distance to the ground plane b’ may
be taken to be different from the dielectric thickness b
below the center conductor. Equation (1) is now replaced
by two matrix equations. One of these applies-to the air
gap above the center conductor (region II) and the other
applies to the dielectric medium below the center conduc-
tor (region I). That is

[z]=[U]""[T], STl (10
where the N XN matnces (U], [T] are determined by
" physical parameters below the center conductor, and the
N X N matrices [U’], [T"] are determined 'by physical
parameters above the center conductor. The eigensuscep-
tances determined from the matrices [Z], [ Z’] must then be
summed to give the total eigensusceptances for the circuit.
This is the case because the two regions above and below
the center conductor are in shunt. These circuit eigensus-
ceptances then determine the electrical performance. It
should be clear that the computational time will be essen-

tially doubled for the case of microstrip.

[z]=[U]
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V. CONCLUSION

In summary, N-fold rotational symimetry is all that is
required to apply the FFT method described in this paper.
Reflection symmetry about the center conductor is not
required.
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